Uranium dating accuracy

Radiometric dating is a much misunderstood phenomenon. Evolutionists often misunderstand the method, assuming it gives a definite age for tested samples. Creationists also often misunderstand it, claiming that the process is inaccurate. Perhaps a good place to start this article would be to affirm that radiometric dating is not inaccurate.

Radiometric Dating — Is It Accurate?

In beta decay, a neutron turns into a proton by emitting a beta particle, which is an electron click for credit. As someone who has studied radioactivity in detail, I have always been a bit amused by the assertion that radioactive dating is a precise way to determine the age of an object. This false notion is often promoted when radioactive dates are listed with utterly unrealistic error bars.

In this report , for example, we are told that using one radioactive dating technique, a lunar rock sample is 4, million years old, plus or minus 23 million years old. Of course, that error estimate is complete nonsense. It refers to one specific source of error — the uncertainty in the measurement of the amounts of various atoms used in the analysis. Most likely, that is the least important source of error. If those rocks really have been sitting around on the moon for billions of years, I suspect that the the wide range of physical and chemical processes which occurred over that time period had a much more profound effect on the uncertainty of the age determination.

This is best illustrated by the radioactive age of a sample of diamonds from Zaire. Their age was measured to be 6. Do you see the problem? Those who are committed to an ancient age for the earth currently believe that it is 4. Obviously, then, the minimum error in that measurement is 1. Such uncertainties are usually glossed over, especially when radioactive dates are communicated to the public and, more importantly, to students.

Generally, we are told that scientists have ways to analyze the object they are dating so as to eliminate the uncertainties due to unknown processes that occurred in the past. One way this is done in many radioactive dating techniques is to use an isochron. However, a recent paper by Dr. Robert B. Hayes has pointed out a problem with isochrons that has, until now, not been considered. The elements rubidium and strontium are found in many rocks. One form of rubidium Rb is radioactive.

As illustrated above, a neutron in a Rb atom can eject an electron often called a beta particle , which has a negative charge. Since a neutron has no charge, it must become positively charged after emitting an electron. In fact, it becomes a proton. This changes the chemical identity of the atom. It is no longer Rb; it is strontium Sr Sr is not radioactive, so the change is permanent. We know how long it takes Rb to turn into Sr, so in principle, if we analyze the amount of Rb and Sr in a rock, we should be able to tell how long the decay has been occurring.

Of course, there are all sorts of uncertainties involved. How much Sr was in the rock when it first formed? Was Rb or Sr added to the rock by some unknown process? Was one of them removed from the rock by some unknown process? The isochron is supposed to take care of such issues. Essentially, rather than looking at the amounts of Rb and Sr, we look at their ratios compared to Sr The ratio of Sr to Sr is graphed versus the ratio of Rb to Sr for several different parts of the rock. How does that help?

Thus, it provides an independent analysis of the rock that does not depend on the radioactive decay that is being studied. The amount of Sr that was already in the rock when it formed, for example, should be proportional to the amount of Sr that is currently there. Since the data are divided by the amount of Sr, the initial amount of Sr is cancelled out in the analysis.

He says that there is one process that has been overlooked in all these isochron analyses: Atoms and molecules naturally move around, and they do so in such as way as to even out their concentrations. A helium balloon, for example, will deflate over time, because the helium atoms diffuse through the balloon and into the surrounding air. Well, diffusion depends on the mass of the thing that is diffusing. Sr diffuses more quickly than Sr, and that has never been taken into account when isochrons are analyzed.

No problem. Now that Dr. Hayes has brought it up, we can take it into account, right? If the effects of diffusion can be taken into account, it will require an elaborate model that will most certainly require elaborate assumptions. Hayes suggests a couple of other approaches that might work, but its not clear how well. So what does this mean? If you believe the earth is very old, then most likely, all of the radioactive dates based on isochrons are probably overestimates.

How bad are the overestimates? Most likely, the effect will be dependent on the age. I would think that the older the sample, the larger the overestimate. As a young-earth creationist, I look at this issue in a different way. Certainly not enough to justify the incredibly unscientific extrapolation necessary in an old-earth framework. This newly-pointed-out flaw in the isochron method is a stark reminder of that. A good isochron was supposed to be rock-solid evidence pun intended that the radioactive date is reliable.

We now know that it is not. Wile, I was waiting for you to comment on this, because I wanted to ask if you think this problem can be extrapolated to other isotopes such as lead and argon. If so, it seems to be a pretty big deal. As I said, carbon dating is an exception, but most other modern radiometric dates are produced using an isochron. Are the samples we see in the RATE study, for example, just anomalies, existing on the ends of the bell curve, or are these indicative of an endemic misunderstanding of the process?

Are there any theories that could account for the accelerated decay rate or how the daughters could have gotten in to the samples? Thus, any significant amount of daughter product will produce a very old date. In my view, if two different dating schemes give significantly different answers, then either one of them is wrong or both of them are wrong.

Scientists exclude what we think are anomalous data all the time. Unfortunately, that discarded data might be what gives us real insight. Young-earth creationists have a hard time explaining the general results of long-lived isotopes and their daughter products being present. On the other side, old-earthers have a hard time explaining all the discordance. If radioactive dating is so reliable, why do different methods yield different results?

Why are some of those differences really, really large? As is often the case, there are problems on both sides. The side you end up coming down on often depends on which problems you are most comfortable trying to deal with. Physicists already theorize that dark matter would affect nuclear decay rates; what if the leftover energy went to the dark matter? The heat problem occurs everywhere there are radioactive isotopes, so throughout the crust and mantle of the earth, for example.

The dark matter would have to be there in order to take the heat. You can think of dark matter here as a lot like the luminiferous ether: Since its interaction with normal matter is incredibly weak, it can very easily pass through the earth. Or something. Not to mention that different models of dark matter would lead to different interactions. Are we able to calculate the mass of the earth from our knowledge of its contents, and not just the gravitational force we detect?

I think if there were much dark matter in the earth, it would be noticeable. We also know the overall composition of the crust and mantle from samples. Thus, the only real unknown is the composition of the core. Using the mass and all those other measurements, we deduce that the core is mostly iron with some nickel. I fear it is more a matter of philosophy rather than hard science: The problem with that, is that, in the first case, there appear to be no transitional fossils when there should be millions , and to make the assumption previously herein stated, evolutionary conclusions are more akin to a combination of wishful thinking combined with a sympathetic magic mindset, than to observable examples.

Evolution is taught as established fact, and scientific enquiry is severely trammelled by those who prefer a status quo. Every fossil between organisms alive now and abiogenesis is a transitional fossil, Tony. There are also transitional fossils and organisms in the misguided definition of the word you are using. I admire your faith, Cromwell. Yet you state it as fact. Then, you claim that all fossils are a transition between that unrealistic event and the life we see now. Thanks for writing an informative article.

Error bars have their place, but you are correct in pointing out that they are often misunderstood not only by the general public, but by scientists who are not savvy in radiometric dating. I would have worded this sentence differently: I am not convinced that differential diffusion of isotopes will be all that significant. After all, fractionation of light elements, such as oxygen, provides us with all sorts of insights into geologic processes because the mass difference between O and O is rather significant, whereas the mass difference between Sr and Sr is not all that great, in terms of ratios.

The overall reliability of radiometric dating was addressed in some detail in a recent book by Brent Dalrymple, a premier expert in the field. The basic equation of radiometric dating requires that Accurate radiometric dating generally requires.

Radiometric dating , radioactive dating or radioisotope dating is a technique used to date materials such as rocks or carbon , in which trace radioactive impurities were selectively incorporated when they were formed. The method compares the abundance of a naturally occurring radioactive isotope within the material to the abundance of its decay products, which form at a known constant rate of decay. Together with stratigraphic principles , radiometric dating methods are used in geochronology to establish the geologic time scale. By allowing the establishment of geological timescales, it provides a significant source of information about the ages of fossils and the deduced rates of evolutionary change. Radiometric dating is also used to date archaeological materials, including ancient artifacts.

Many people think that radiometric dating has proved the Earth is millions of years old. Even the way dates are reported e.

The good dates are confirmed using at least two different methods, ideally involving multiple independent labs for each method to cross-check results. Sometimes only one method is possible, reducing the confidence researchers have in the results. Kidding aside, dating a find is crucial for understanding its significance and relation to other fossils or artifacts.

Everything Worth Knowing About ... Scientific Dating Methods

September 16, A new study by geologists at the Berkeley Geochronology Center and the University of California, Berkeley, improves upon a widely used dating technique, opening the possibility of a vastly more accurate time scale for major geologic events in Earth's history. To date, zircons - known to many as a semiprecious stone and December's birthstone - have often produced confusing and inaccurate results. Zircons have produced complicated data that are hard to interpret, though people have pulled dates out," said Mundil, a former UC Berkeley postdoctoral fellow now at the BGC, a non-profit scientific research institute dedicated to perfecting dating techniques for establishing the history of Earth and life on Earth. This boundary coincides with the largest extinction of life on Earth, when most marine invertebrates died out, including the well-known flat, segmented trilobites.

Scientist Realizes Important Flaw in Radioactive Dating

In beta decay, a neutron turns into a proton by emitting a beta particle, which is an electron click for credit. As someone who has studied radioactivity in detail, I have always been a bit amused by the assertion that radioactive dating is a precise way to determine the age of an object. This false notion is often promoted when radioactive dates are listed with utterly unrealistic error bars. In this report , for example, we are told that using one radioactive dating technique, a lunar rock sample is 4, million years old, plus or minus 23 million years old. Of course, that error estimate is complete nonsense. It refers to one specific source of error — the uncertainty in the measurement of the amounts of various atoms used in the analysis. Most likely, that is the least important source of error. If those rocks really have been sitting around on the moon for billions of years, I suspect that the the wide range of physical and chemical processes which occurred over that time period had a much more profound effect on the uncertainty of the age determination. This is best illustrated by the radioactive age of a sample of diamonds from Zaire.

Here I want to concentrate on another source of error, namely, processes that take place within magma chambers. To me it has been a real eye opener to see all the processes that are taking place and their potential influence on radiometric dating.

It is an accurate way to date specific geologic events. This is an enormous branch of geochemistry called Geochronology. There are many radiometric clocks and when applied to appropriate materials, the dating can be very accurate.

Radiometric dating

Прошло еще несколько минут. Она пыталась не думать о Дэвиде, но безуспешно. С каждым завыванием сирены слова Хейла эхом отдавались в ее мозгу: Я сожалею о Дэвиде Беккере. Сьюзан казалось, что она сходит с ума. Она уже готова была выскочить из комнаты, когда Стратмор наконец повернул рубильник и вырубил электропитание. В одно мгновение в шифровалке установилась полная тишина. Сирены захлебнулись, мониторы Третьего узла погасли.

Тело Грега Хейла растворилось в темноте, и Сьюзан, инстинктивно поджав ноги, прикрылась пиджаком Стратмора. В шифровалке никогда еще не было так тихо, здесь всегда слышался гул генераторов. Теперь все умолкло, так что можно было различить облегченный вздох раненого чудовища - ТРАНСТЕКСТА, постепенно стихающее шипение и посвистывание, сопутствующие медленному охлаждению. Сьюзан закрыла глаза и начала молиться за Дэвида. Ее молитва была проста: она просила Бога защитить любимого человека.

Uranium/lead dating provides most accurate date yet for Earth's largest extinction

Тогда, кто бы ни стал обладателем ключа, он скачает себе нашу версию алгоритма.  - Стратмор помахал оружием и встал.  - Нужно найти ключ Хейла. Сьюзан замолчала. Коммандер, как всегда, прав. Им необходим ключ, который хранится у Хейла.

Хейл - Северная Дакота. Она замерла и непроизвольно задержала дыхание, чувствуя на себе взгляд Хейла. Сьюзан повернулась, и Хейл, пропуская ее вперед, сделал широкий взмах рукой, точно приветствуя ее возвращение в Третий узел. - После вас, Сью, - сказал. ГЛАВА 41 В кладовке третьего этажа отеля Альфонсо XIII на полу без сознания лежала горничная. Человек в очках в железной оправе положил в карман ее халата связку ключей.

Звонок коммандера явился для него полным сюрпризом. Стратмор решился на. Он жертвует всеми планами, связанными с Цифровой крепостью. Хейл не мог поверить, что Стратмор согласился упустить такую возможность: ведь черный ход был величайшим шансом в его жизни. Хейлом овладела паника: повсюду, куда бы он ни посмотрел, ему мерещился ствол беретты Стратмора.

Я понимаю это как знак согласия, - сказал он, и они не отрывались друг от друга всю ночь, согреваемые теплом камина. Этот волшебный вечер был шесть месяцев назад, до того как Дэвида неожиданно назначили главой факультета современных языков. С тех пор их отношения развивались с быстротой скольжения по склону горы. ГЛАВА 4 Потайная дверь издала сигнал, выведя Сьюзан из состояния печальной задумчивости.

Дверь повернулась до положения полного открытия. Через пять секунд она вновь закроется, совершив вокруг своей оси поворот на триста шестьдесят градусов.

- Подслушивающий должен был находиться в непосредственной близости и точно знать, что надо подслушивать.  - Он положил руку ей на плечо.  - Я никогда не послал бы туда Дэвида, если бы считал, что это связано хоть с малейшей опасностью.  - Он улыбнулся.  - Поверь .

Debunking Creationism: "Radiometric Dating Is Unreliable!"
Related publications